
Simulink[®]

Modeling Guidelines for Code Generation

MATLAB® & SIMULINK®

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales and services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

T

Phone: 508-647-7000

The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098

Modeling Guidelines for Code Generation

© COPYRIGHT 2010-2018 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 2010	Online only	New for Version 1.0 (Release 2010b)
April 2011	Online only	Revised for Version 1.1 (Release 2011a)
September 2011	Online only	Revised for Version 1.2 (Release 2011b)
March 2012	Online only	Revised for Version 1.3 (Release 2012a)
September 2012	Online only	Revised for Version 1.4 (Release 2012b)
March 2013	Online only	Revised for Version 1.5 (Release 2013a)
September 2013	Online only	Revised for Version 1.6 (Release 2013b)
March 2014	Online only	Revised for Version 1.7 (Release 2014a)
October 2014	Online only	Revised for Version 1.8 (Release 2014b)
March 2015	Online only	Revised for Version 1.9 (Release 2015a)
September 2015	Online only	Revised for Version 1.10 (Release 2015b)
March 2016	Online only	Revised for Version 1.11 (Release 2016a)
September 2016	Online only	Revised for Version 1.12 (Release 2016b)
March 2017	Online only	Revised for Version 1.13 (Release 2017a)
September 2017	Online only	Revised for Version 1.14 (Release 2017b)
March 2018	Online only	Revised for Version 1.15 (Release 2018a)
September 2018	Online only	Revised for Version 1.16 (Release 2018b)
Coptomicor 2010	O	110.1000 101 .0101011 1110 (11010000 20100)

Contents

1 [Introduc	tion
	Motivation	1-2
	Guideline Template	1-3
	•	
) [Block Considerat	ions
	cgsl_0101: Zero-based indexing	2-2
	cgsl_0102: Evenly spaced breakpoints in lookup tables	2-4
	cgsl_0103: Precalculated signals and parameters	2-5
	cgsl_0104: Modeling global shared memory using data stores	2-8
	cgsl_0105: Modeling local shared memory using data stores	2-13
2 [Modeling Pattern Considerat	ions
و	cgsl_0201: Redundant Unit Delay and Memory blocks	3-2

	cgsl_0202: Usage of For, While, and For Each subsystems with vector signals	3-7
	cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks	3-9
	cgsl_0205: Signal handling for multirate models	3-16
	cgsl_0206: Data integrity and determinism in multitasking models	3-18
4 F	Configuration Parameter Considerati	ons
4		
	cgsl_0301: Prioritization of code generation objectives for code efficiency	4-2
	cgsl_0302: Diagnostic settings for multirate and multitasking models	4-3

Introduction

- "Motivation" on page 1-2
- "Guideline Template" on page 1-3

Motivation

MathWorks intends the guidelines for engineers developing models and generating code for embedded systems using Model-Based Design with MathWorks products. The guidelines provide recommendations for model settings, block usage, and block parameters that impact simulation behavior or code generated by the Embedded Coder® product.

The guidelines do not address model style or development processes. For more information about creating models in a way that improves consistency, clarity, and readability, see the "MAAB Control Algorithm Modeling". Development process guidance and additional information for specific standards is available with the IEC Certification Kit (for ISO 26262 and IEC 61508) and DO Qualification Kit (for DO-178) products.

Disclaimer While adhering to the recommendations in the guidelines will reduce the risk that an error is introduced during development and not be detected, it is not a guarantee that the system being developed will be safe. Conversely, if some of the recommendations in the guidelines are not followed, it does not mean that the system being developed will be unsafe.

Guideline Template

Guideline descriptions are documented, using the following template. Companies that want to create additional guidelines are encouraged to use the same template.

ID: Title XX nnnn: Title of the quideline (unique, short)

Description Description of the guideline

Prerequisites Links to guidelines that are prerequisites to this guideline (ID: Title)

Notes Notes for using the guideline

Rationale Rationale for providing the guideline

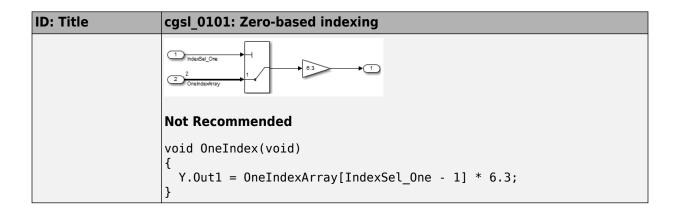
Model Title of and link to the corresponding Model Advisor check, if a check

Advisor exists

Check

References References to standards that apply to guideline

See AlsoLinks to additional informationLast ChangedVersion number of last change


Examples Guideline examples

Block Considerations

- "cgsl 0101: Zero-based indexing" on page 2-2
- "cgsl_0102: Evenly spaced breakpoints in lookup tables" on page 2-4
- "cgsl_0103: Precalculated signals and parameters" on page 2-5
- "cgsl_0104: Modeling global shared memory using data stores" on page 2-8
- "cgsl 0105: Modeling local shared memory using data stores" on page 2-13

cgsl_0101: Zero-based indexing

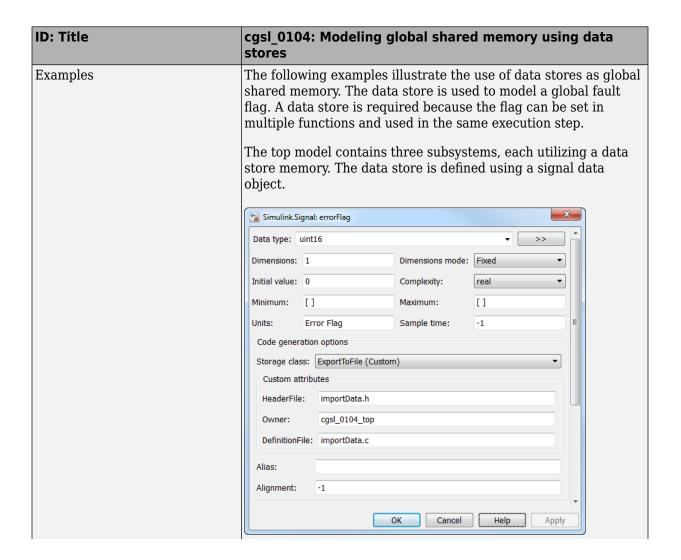
ID: Title	cgsl_0	101: Zero-based indexing		
Description		Use zero-based indexing for blocks that require indexing. To set up zero-base indexing, do one of the following:		
	A Select block parameter Use zero-based contiguous for the Inc. Vector block.			
		Set block parameter Index mode to Zero-based for the following blocks:		
		Assignment		
		• Selector		
		For Iterator		
		Find Nonzero Elements		
Notes	The C l	language uses zero-based indexing.		
Rationale	A, B	Use zero-based indexing for compatibility with integrated C code.		
		Results in more efficient C code execution. One-based indexing requires a subtraction operation in generated code.		
See Also	"hisl_0	"hisl_0021: Consistent vector indexing method"		
Last Changed	R2011l	b		
Examples	1 IndexSt	1 IndexSel_Zero 2 3 Zero IndexArray 1		
	Recommended void ZeroIndex(void)			
		<pre>{ Y.Out5 = 3.0 * ZeroIndexArray[IndexSel_Zero]; }</pre>		

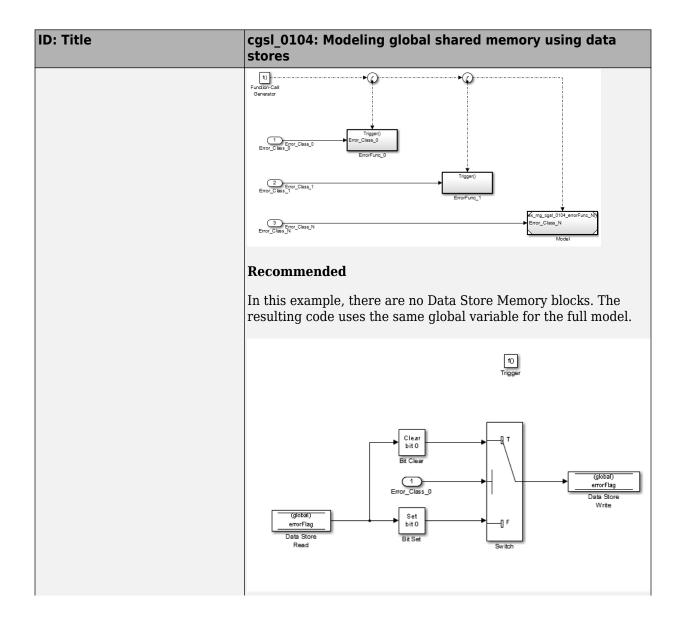
cgsl_0102: Evenly spaced breakpoints in lookup tables

ID: Title	cgsl_	0102: Evenly spaced breakpoints in lookup tables		
Description	When	When you use Lookup Table and Prelookup blocks,		
	A	With <i>non-fixed-point data types</i> , use evenly spaced data breakpoints for the input axis		
	В	With <i>fixed-point data types</i> , use power of two spaced breakpoints for the input axis		
Notes		ly spaced breakpoints can prevent generated code from including on operations, resulting in faster execution.		
Rationale	A	Improve ROM usage and execution speed.		
	В	 Improve execution speed. When compared to unevenly spaced data, power-of-two data can Increase data RAM usage if you require a finer step size Reduce accuracy if you use a coarser step size Compared to an evenly spaced data set, there should be minimal cost in memory or accuracy. 		
Model Advisor Checks	For c	Embedded Coder > Identify questionable fixed-point operations For check details, see "Identify questionable fixed-point operations" (Embedded Coder).		
See Also	"Forn	"Formulation of Evenly Spaced Breakpoints" in the Simulink documentation		
Last Changed	R201	R2010b		

cgsl_0103: Precalculated signals and parameters

ID: Title	cgsl_01	103: Precalculated signals and parameters
Description	Precalc the follo	ulate invariant parameters and signals by doing one of owing:
	A	Manually precalculate the values
	В	Set the following model optimization parameters:
		Set Optimization > Default parameter behavior to Inlined
		Enable Optimization > Inline invariant signals
Notes	Precalculating variables can reduce local and global memory usage and improve execution speed. If you set Default parameter behavior to Inlined and enable Inline invariant signals, the code generator minimizes the number of run-time calculations by maximizing the number calculations completed before run time. In some cases, this can lead to a reduction in the number of parameters stored. However, the algorithms the code generator uses have limitations. In some cases, the code is more compact if you calculate the values outside of the Simulink environment. This can improve model efficiency, but can reduce model readability.	
Rationale	A, B	Precalculate data, outside of the Simulink environment, to reduce memory requirements of a system and improve run-time execution.
Last Changed	R2012b	


ID: Title	cgsl_0103: Precalculated signals and parameters
Examples	In the following model, the four paths are mathematically equivalent. However, due to algorithm limitations, the number of run-time calculations for the paths differs.
	1
	1 X Pah_2 2
	1 3 × Path_3 3
	1 4 × Pat_4 4 (1-4)*3=-9 × Pre_Calo_1 5
	Path_1 = InputSignal * -3.0 * 3.0;
	<pre>/* Product: '<root>/Product4' incorporates: * Inport: '<root>/In1' */ Path_2 = InputSignal * -9.0;</root></root></pre>
	<pre>/* Product: '<root>/Product2' incorporates: * Constant: '<root>/Constant2' * Inport: '<root>/In1' */ Path_3 = -9.0 * InputSignal;</root></root></root></pre>
	<pre>/* Product: '<root>/Product5' incorporates: * Constant: '<root>/Constant2' * Inport: '<root>/In1' */ Path_4 = -3.0 * InputSignal * 3.0;</root></root></root></pre>


ID: Title	cgsl_0103: Precalculated signals and parameters
	<pre>/* Product: '<root>/Product6' incorporates: * Constant: '<root>/Constant3' * Inport: '<root>/In1' */ Pre_Calc_1 = -9.0 * InputSignal;</root></root></root></pre>
	To maximize automatic precalculation, add signals at the end of the set of equations.
	Inlining data reduces the ability to tune model parameters. You should define parameters that require calibration to allow calibration. For more information, see "Create Tunable Calibration Parameter in the Generated Code" (Simulink Coder).

cgsl_0104: Modeling global shared memory using data stores

ID: Title	cgsl_0 stores	104: Modeling global shared memory using data	
Description		using data store blocks to model shared memory across le models:	
	A	In the Configuration Parameters dialog box, on the Diagnostics pane, setData Validity > Data Store Memory block > Duplicate data store names to error for models in the hierarchy	
	В	Define the data store using a Simulink Signal or MPT Signal object	
	С	Do not use Data Store Memory blocks in the models	
Notes	within data st Use th unintedata st intenti Merge a mutu modeli	If multiple Data Store blocks use the same data store name within a model, then Simulink interprets each instance of the data store as having a unique local scope. Use the diagnostic Duplicate data store names to help detect unintended identifier reuse. For models intentionally using local data stores, set the diagnostic to warning. Verify that only intentional data stores are included. Merge blocks, used in conjunction with subsystems operating in a mutually exclusive manor, provide a second method of modeling global data across multiple models.	
Rationale	A, B, C	Promotes a modeling pattern where a single consistent data store is used across models and a single global instance is created in the generated code.	
See Also	• "his	sl_0013: Usage of data store blocks"	
	• "his	sl_0015: Usage of Merge blocks"	
		sl_0302: Diagnostic settings for multirate and multitasking dels" on page 4-3	
		sl_0105: Modeling local shared memory using data stores" page 2-13	

	cgsl_0104: Modeling global shared memory using data stores
Last Changed	R2011b

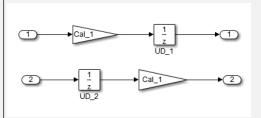
ID: Title cgsl 0104: Modeling global shared memory using data stores void cgsl_0104_top_ErrorFunc_0(void) if (Error Class 0) { $\underline{\mathtt{errorFlag}} \ = \ (\underline{\mathtt{uint16}} \ \underline{\mathtt{T}}) \ (\sim ((\underline{\mathtt{uint16}} \ \underline{\mathtt{T}}) \ (((\underline{\mathtt{uint16}} \ \underline{\mathtt{T}}) \ (\sim \underline{\mathtt{errorFlag}})) \ \mid \ ((\underline{\mathtt{uint16}} \ \underline{\mathtt{T}}) \ 1 \ U)))))))$ errorFlag = (uint16_T) (errorFlag | ((uint16_T)1U)); **Not Recommended** In this example, a Data Store Memory block is added into the Model block subsystem. The model subsystem uses a local version of the data store. The Atomic Subsystem use a different version. f() errorFlag Clear ErrorFunc_N Atomic subsystem Set errorFlag rtMdlrefDWork_mr_cgsl_0104_erro mr_cgsl_0104_errorF_MdlrefDWork; void mr_cgsl_0104_errorFunc_N_UseDSM(const_boolean_T *rtu_Error_Class_N) rtDW mr cgsl 0104 errorFunc N U *localDW = & (mr cgsl 0104 errorF MdlrefDWork.rtdw); if (*rtu_Error_Class_N) { $localDW - > errorFlag = (\underbrace{uint16\ T}) \left(\sim (\underbrace{(\underbrace{uint16\ T})}) \left((\underbrace{(\underbrace{uint16\ T})}) \left(\sim localDW - > errorFlag) \right) \right)$ | ((<u>uint16_T</u>)512U))); } else { $\texttt{localDW->errorFlag = } (\underline{\texttt{uint16_T}}) \; (\texttt{localDW->errorFlag } \; | \; ((\underline{\texttt{uint16_T}}) \; \texttt{512U})) \; ;$

cgsl_0105: Modeling local shared memory using data stores

ID: Title		cgsl_0105: Modeling local shared memory using data stores		
Description	When	using data store blocks as local shared memory:		
	A	Explicitly create the data store using a Data Store Memory block.		
	В	Clear the block parameter option Data store name must resolve to Simulink signal object.		
	С	Consider following a naming convention for local Data Store Memory blocks.		
Notes	uninte data si intenti Data s code. I includ scoped	Use the diagnostic Duplicate data store names to help detect unintended identifier reuse. For models intentionally using local data stores, set the diagnostic to warning. Verify that only intentional data stores are included. Data store blocks are realized as global memory in the generated code. If they are not assigned a specific storage class, they are included in the DWork structure. In the model, the data store is scoped to the defining subsystem and below. In the generated code, the data store has file scope.		
Rationale	А, В	Data store block is treated as a local instance of the data store		
	С	Provides graphical feedback that the data store is local		
See Also	sto	rsl_0104: Modeling global shared memory using data res" on page 2-8		
		• "cgsl_0302: Diagnostic settings for multirate and multitasking models" on page 4-3		
	• "hi	sl_0013: Usage of data store blocks"		
Last Changed	R2011	R2011b		

ID: Title cgsl 0105: Modeling local shared memory using data stores Examples In some instances, such as a library function, reuse of a local data store is required. In this example, the local data store is defined in two subsystems. LocalDataStore_1 LocalDataStore_2 Out1 The instance of localFlag is in scope within the subsystem LocalDataStore 1 and its subsystems. /* Block signals and states (auto storage) for system '<Root>' */ typedef struct { real_T localFlag; /* '<S2>/DSM Loc 2' */ /* '<S1>/DSM Loc 1' */ real T localFlag k; } D Work cgsl 0105; In the generated code, the data stores are part of the global DWork structure for the model. Embedded Coder automatically assigns them unique names during the code generation process.

Modeling Pattern Considerations

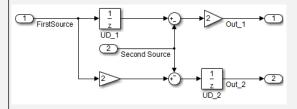

- "cgsl 0201: Redundant Unit Delay and Memory blocks" on page 3-2
- "cgsl_0202: Usage of For, While, and For Each subsystems with vector signals" on page 3-7
- "cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks" on page 3-9
- "cgsl 0205: Signal handling for multirate models" on page 3-16
- "cgsl 0206: Data integrity and determinism in multitasking models" on page 3-18

cgsl_0201: Redundant Unit Delay and Memory blocks

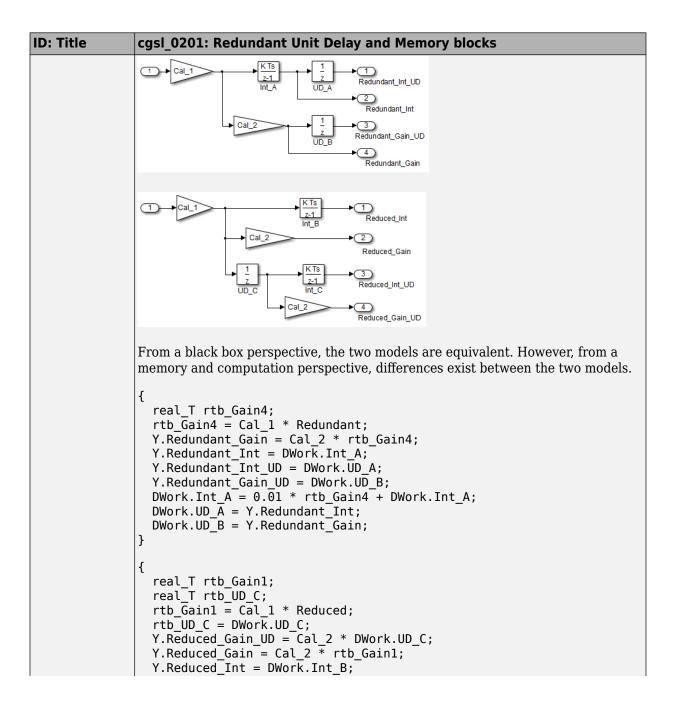
ID: Title	cgsl_0201: Redundant Unit Delay and Memory blocks			
Description	When	preparing a model for code generation,		
	A	Remove redundant Unit Delay and Memory blocks.		
Rationale	A Redundant Unit Delay and Memory blocks use additional global memory. Removing the redundancies from a model reduces memory usage without impacting model behavior.			
Last Changed	R2013	Sa Sa		
Example	1	ConsolidatedState_2 Cal_1 UD_3		
	Recor	nmended: Consolidated Unit Delays		
	Conso	<pre>duced(void) lidatedState_2 = Matrix_UD_Test - (Cal_1 * DWork.UD_3_DSTATE + Cal_2 * rk.UD_3_DSTATE); .UD_3_DSTATE = ConsolidatedState_2;</pre>		
	1)—	Cal_1		
	Not R	ecommended: Redundant Unit Delays		
	{ Redund DWo DWork	dundant(void) dantState = (Matrix_UD_Test - Cal_2 * DWork.UD_1B_DSTATE) - Cal_1 * rk.UD_1A_DSTATE; .UD_1B_DSTATE = RedundantState; .UD_1A_DSTATE = RedundantState;		

ID: Title cgsl_0201: Redundant Unit Delay and Memory blocks

Unit Delay and Memory blocks exhibit commutative and distributive algebraic properties. When the blocks are part of an equation with one driving signal, you can move the Unit Delay and Memory blocks to a new position in the equation without changing the result.


For the top path in the preceding example, the equations for the blocks are:

- 1 Out 1(t) = UD 1(t)
- 2 UD_1(t) = In_1(t-1) * Cal_1


For the bottom path, the equations are:

- 1 $Out_2(t) = UD_2(t) * Cal_1$
- $2 UD_2(t) = In_2(t-1)$

In contrast, if you add a secondary signal to the equations, the location of the Unit Delay block impacts the result. As the following example shows, the location of the Unit Delay block impacts the results due to the skewing of the time sample between the top and bottom paths.

In cases with a single source and multiple destinations, the comparison is more complex. For example, in the following model, you can refactor the two Unit Delay blocks into a single unit delay.

ID: Title cgsl 0201: Redundant Unit Delay and Memory blocks Y.Reduced Int UD = DWork.Int C; DWork.UD C = rtb Gain1; DWork.Int B = $0.\overline{0}1$ * rtb Gain1 + DWork.Int B; DWork.Int C = 0.01 * rtb UD C + DWork.Int C; } In this case, the original model is more efficient. In the first code example, there are three global variables, two from the Unit Delay blocks (DWork.UD A and DWork.UD B) and one from the discrete time integrator (DWork.Int A). The second code example shows a reduction to one global variable generated by the unit delays (Dwork.UD C), but there are two global variables due to the redundant Discrete Time Integrator blocks (DWork.Int B and DWork.Int C). The Discrete Time Integrator block path introduces an additional local variable (rtb UD C) and two additional computations. By contrast, the refactored model (second) below is more efficient. R_Int_Out Int_Out real T rtb Gain4 f: real T rtb Int D; rtb Gain4 f = Cal 1 * U.Input; rtb Int D = DWork.Int D; Y.R Int Out = DWork.UD D; Y.R Gain Out = DWork.UD E; DWork.Int D = 0.01 * rtb Gain4 f + DWork.Int D; DWork.UD D = rtb Int D; DWork.UD_E = Cal_2 * rtb_Gain4_f; real_T rtb_UD_F;

```
rtb_UD_F = DWork.UD_F;
Y.Gain_Out = Cal_2 * DWork.UD_F;
Y.Int_Out = DWork.Int_E;
DWork.UD_F = Cal_1 * U.Input;
DWork.Int_E = 0.01 * rtb_UD_F + DWork.Int_E;
}

The code for the refactored model is more efficient because the branches from the root signal do not have a redundant unit delay.
```

cgsl_0202: Usage of For, While, and For Each subsystems with vector signals

ID: Title	cgsl_0202: Usage of For, While, and For Each subsystems with vector signals			
Description	When developing a model for code generation,			
	A	Use For, While, and For Each subsystems for calculations that require iterative behavior or operate on a subset (frame) of data.		
	В	Avoid using For, While, or For Each subsystems for basic vector operations.		
Rationale	A, B	Avoid redundant loops.		
See Also	"Loop unrolling threshold" (Simulink Coder) in the Simulink documentation			
	MathWorks Automotive Advisor Board guideline db_0117: Simulink patterns for vector signals			
Last Changed	R201	R2010b		

ID: Title cgsl 0202: Usage of For, While, and For Each subsystems with vector signals The recommended method for preceding calculation is to place the Gain block Examples outside the For Subsystem. If the calculations are required as part of a larger algorithm, you can avoid the nesting of for loops by using Index Vector and Assignment blocks. For 0: N-1 Iterator Recommended for (s1_iter = 0; s1_iter < 10; s1_iter++) {</pre> RecommendedOut[s1 iter] = 2.3 * vectorInput[s1 iter]; A common mistake is to embed basic vector operations in a For, While, or For Each subsystem. The following example includes a simple vector gain inside a For subsystem, which results in unnecessary nested for loops. **Not Recommended** for (s1 iter = 0; s1 iter < 10; s1 iter++) { for (i = 0; i < 10; i++) { NotRecommendedOut[i] = 2.3 * vectorInput[i]; }

cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks

ID: Title	cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks			
Description	are in a	an atomic subsystem (r bus signals and some of or a referenced model, us w to select signal elemen	se the following
	A Bus or vector entering an atomic subsystem: Function packaging: Non-reusable function Function interface: void_void			
			Signals selected outside subsystem results in	Signal selected inside subsystem results in
		Virtual Bus	No data copies.	No data copies.
		Nonvirtual Bus	No data copies.	No data copies.
		Vector	A copy of the selected signals in global block I/O structure that is used in the function.	No data copies.

ID: Title	cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks			
	_	nging: Non-reusable fun	ction	
	Function interl	Function interface: Allow arguments Signals selected Signal selected		
		outside subsystem results in	inside subsystem results in	
	Virtual Bus	No data copies. Only the selected signals are passed to the function.	No data copies. Only the selected signals are passed to the function.	
	Nonvirtual Bus	No data copies. Only the selected signals are passed to the function.	No data copies. The whole bus is passed to the function.	
	Vector	A copy of the selected signals in a local variable that is passed to the function.	No data copies. The whole vector is passed to the function.	

ID: Title	204: Vector and bu del blocks	s signals crossing into	atomic subsystems
	Function packagi	ng: Reusable functio	n
		Signals selected outside subsystem results in	Signal selected inside the subsystem results in
	Virtual Bus	No data copies. Only the selected signals are passed to the function.	No data copies. Only the selected signals are passed to the function.
	Nonvirtual Bus	No data copies. Only the selected signals are passed to the function. See example 1.	No data copies. The whole bus is passed to the function.
	Vector	A copy of the selected signals in a local variable that is passed to the function.	No data copies. The whole vector is passed to the function.
		,	

ID: Title	cgsl_0204: Vector and bus signals crossing into atomic subsystem or Model blocks					
	В	Bus or vector ente	Bus or vector entering a Model block:			
			Signals selected outside Model block results in	Signal selected inside Model block results in		
		Virtual Bus	No data copies. Only selected signals are passed to the function.	If Inport block parameter Output as nonvirtual bus is selected, then there are no data copies. Only the selected signals are passed to the function. If Inport block parameter Output as nonvirtual bus is cleared, then a copy of the whole bus is passed to the function.		
		Nonvirtual Bus	No data copies. Only the selected signals are passed to the function.	If Inport block parameter Output as nonvirtual bus is selected, then there are no data copies. Only the selected signals are passed to the function. If Inport block parameter Output as nonvirtual bus		

ID: Title	cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks
	bus is passed to the function. See example 2.
	Vector A copy of the selected signals in a local whole vector is passed to the passed to the function. A copy of the selected whole vector is passed to the function.
Notes	Depending on Embedded Coder settings (e.g. optimizations), predecessor blocks and signal storage classes, actual results might differ from the tables. We have the stable of the stable
	Virtual busses do not support global data. If the subsystem is set to Inline data series do not assure.
Rationale	If the subsystem is set to Inline, data copies do not occur. A. B. Minimize BAM, BOM, and stack years. A. B. Minimize BAM, BOM, and stack years.
	A, B Minimize RAM, ROM, and stack usage
Last Changed	R2016a Example 1: Nonvirtual bus entering an atomic subsystem
Examples	Function packaging: Reusable function Selection: Subsignal selected outside the subsystem DusObj
	Function packaging: Reusable function double [4x1] in Gain Gain

ID: Title cgsl 0204: Vector and bus signals crossing into atomic subsystems or Model blocks Only the selected signals are passed to the function: void Function(const real T rtu in[4], real T rty out[4]) 7 { 8 rty out[0] = 3.0 * rtu in[0]; 9 rty_out[1] = 3.0 * rtu_in[1]; 10 rty_out[2] = 3.0 * rtu_in[2]; rty out[3] = 3.0 * rtu in[3]; 11 12 13 14 void ex mg cgsl 0204 example1 step(void) 16 Function(&nonvirtualBus.vector[0], Y.Out1); 17 ì Example 2: Nonvirtual bus entering a model block Total number of instances allowed per top model: Multiple Selection: Subsignal selected inside the referenced model ex_mg_cgsl_0204_example2ref double [4x1] busObj out result <nonvirtualBus> ex_mg_cgsl_0204_example2ref double [4x1] double [4x1] nonvirtualBus <vector> result Gain

ID: Title	cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks			
	There are no data copies in the code for the main model. The whole bus is passed to the model reference function.			
	6			
	Code for the model reference function:			
	<pre>4 void ex_mg_cgsl_0204_example2ref(const <u>busObj</u> *rtu_in, <u>real_T</u> rty_out[4]) 5 { 6 rty_out[0] = 3.0 * rtu_in->vector[0]; 7 rty_out[1] = 3.0 * rtu_in->vector[1]; 8 rty_out[2] = 3.0 * rtu_in->vector[2]; 9 rty_out[3] = 3.0 * rtu_in->vector[3]; 10 }</pre>			

cgsl_0205: Signal handling for multirate models

ID: Title	cgsl_0205: Signal handling for multirate models			
Description	For multirate models, handle the change in operation rate in one of two ways:			
	A At the destination block, Insert a Rate Transition.			
	B Set the parameter Solver > Automatically handle rate transition for data transfer to either Always or Whenever possible.			
Rationale	A,B Following this guideline supports the handling of data operating at different rates.			
Note	Setting the parameter Solver > Automatically handle rate transition for data transfer with the setting to Whenever possible requires inserting a Rate Transition block in locations indicated by Simulink.			
	Setting the parameter Solver > Automatically handle rate transition for data transfer to Always allows Simulink to automatically handle rate transitions by inserting a Rate Transition block. The following exceptions apply:			
	The insertion of a Rate Transition block requires rewiring the block diagram.			
	Multiple Rate Transition blocks are required:			
	The blocks' sample times are not integer multiples of each other			
	The blocks use different sample time offsets			
	One of the rates is asynchronous			
	An inserted Rate Transition block can have multiple valid configurations.			
	For these cases, manually insert a Rate Transition block or blocks.			
	MathWorks does not recommend using Unit Delay and Zero Order Hold blocks for handling rate transitions.			
Last Changed	R2011a			

ID: Title cgsl 0205: Signal handling for multirate models Examples Not Recommended: In this example, the Rate Transition block is inserted at the source, not at the destination of the signal. The model fails to update because the two destination blocks (Gain and Sum) run at different rates. To fix this error, insert Rate Transition blocks at the signal destinations and remove Rate Transition blocks from the signal sources. Failure to remove the Rate Transition blocks is a common modeling pattern that might result in errors and inefficient code. 32.1 **Recommended:** In this example, the rate transition is inserted at the destination of the signal. 32.1 SampleTime = 1/100 SampleTime = 1/100 9.8 SampleTime = 1/200

cgsl_0206: Data integrity and determinism in multitasking models

ID: Title	cgsl_0206: Data integrity and determinism in multitasking mode	ls	
Description	For multitasking models that are deployed with a preemptive (interrupt operating system, protect the integrity of selected signals by doing one following:		
	A Select the Rate Transition block parameter Ensure data integr during data transfer .	ity	
	B For Inport blocks in Function Called subsystems, select the block parameter Latch input for feedback signals of function-call subsystem outputs.		
	To protect selected signal determinism, do one of the following:		
	C Select the Rate Transition block parameter Ensure determinist data transfer (maximum delay).	tic	
	 Select the model configuration parameter Solver > Automathandle rate transition for data transfer. 	tically	
	• Set the model configuration parameter Solver > Determinis data transfer to either Whenever possible or Always.	stic	
Prerequisites	cgsl_0205:Signal handling for multirate models on page 3-16		
Rationale	A,B, C,D Following this guideline protects data against possible corruption preemptive (interruptible) operating systems.	n of	
Note	Multitasking systems with a non-preemptive operating system do not redata integrity or determinism protection. In this case, clear the parame Ensure data integrity during data transfer and Ensure determinis data transfer (maximum delay).	ters	
	Ensuring data integrity and determinism requires additional memory are execution time. To reduce this additional expense, evaluate signals to determine the level of protection that they require.	nd	
See Also	Rate Transition		
	"Data Transfer Problems" (Simulink Coder)		
Last Changed	R2011a		

Configuration Parameter Considerations

- "cgsl_0301: Prioritization of code generation objectives for code efficiency" on page 4-2
- "cgsl 0302: Diagnostic settings for multirate and multitasking models" on page 4-3

cgsl_0301: Prioritization of code generation objectives for code efficiency

ID: Title	cgsl_0301: Prioritization of code generation objectives for code efficiency		
Description		tize code generation objectives for code efficiency by using the Code ration Advisor.	
	A	Assign priorities to code (ROM, RAM, and Execution efficiency) efficiency objectives.	
	В	Select the relative order of ROM, RAM, and Execution efficiency based on application requirements.	
	С	Configure the Code Generation Advisor to run before generating code by setting Check model before generating code on the Code Generation pane in the Configuration Parameters dialog box to On (proceed with warnings) or On (stop for warnings).	
Notes	gener	del's configuration parameters provide control over many aspects of rated code. The prioritization of objectives specifies how configuration neters are set when conflicts between objectives occur.	
	initial check	tizing code efficiency objectives above safety objectives may remove ization or run-time protection code (for example, saturation range ing for signals out of representable range). Review the resulting neter configurations to verify that safety requirements are met.	
Rationale	A, B, C	When you use the Code Generation Advisor, configuration parameters conform to the objectives that you want and they are consistently enforced.	
See also	"Application Objectives Using Code Generation Advisor" (Simulink Coder		
	"Manage a Configuration Set" in the Simulink documentation		
Last Changed	R2015b		

cgsl_0302: Diagnostic settings for multirate and multitasking models

ID: Title	cgsl_0302: Diagnostic settings for multirate and multitasking models
Description	For multirate models using either single tasking or multitasking , set to either warning or error the following diagnostics:
	 Diagnostics > Sample Time > Single task rate transition
	 Diagnostics > Sample Time > Enforce sample time specified by Signal Specification blocks
	 Diagnostics > Detect multiple driving blocks executing at the same time step
	For multitasking models, set to either warning or error the following diagnostics:
	Diagnostics > Sample Time > Multitask task rate transition
	 Diagnostics > Sample Time > Multitask conditionally executed subsystem
	 Diagnostics > Sample Time > Tasks with equal priority
	If the model contains Data Store Memory blocks, set to either Enable all as warnings or Enable all as errors the following diagnostics:
	 Diagnostics > Data Validity > Data Store Memory block > Detect read before write
	 Diagnostics > Data Validity > Data Store Memory block > Detect write after read
	 Diagnostics > Data Validity > Data Store Memory block > Detect write after write
	 Diagnostics > Data Validity > Data Store Memory block > Multitask data store
Rationale	Setting the diagnostics improves run-time detection of rate and tasking errors.

ID: Title	cgsl_0302: Diagnostic settings for multirate and multitasking models
See Also	"Model Configuration Parameters: Diagnostics"
	"hisl_0013: Usage of data store blocks"
	"hisl_0044: Configuration Parameters > Diagnostics > Sample Time"
	"hisl_0303: Configuration Parameters > Diagnostics > Merge block"
Last Changed	2016a